471 research outputs found

    Modelling the effect of ephaptic coupling on spike propagation in peripheral nerve fibres

    Get PDF
    Experimental and theoretical studies have shown that ephaptic coupling leads to the synchronisation and slowing down of spikes propagating along the axons within peripheral nerve bundles. However, the main focus thus far has been on a small number of identical axons, whereas realistic peripheral nerve bundles contain numerous axons with different diameters. Here, we present a computationally efficient spike propagation model, which captures the essential features of propagating spikes and their ephaptic interaction, and facilitates the theoretical investigation of spike volleys in large, heterogeneous fibre bundles. We first lay out the theoretical basis to describe how the spike in an active axon changes the membrane potential of a passive axon. These insights are then incorporated into the spike propagation model, which is calibrated with a biophysically realistic model based on Hodgkin-Huxley dynamics. The fully calibrated model is then applied to fibre bundles with a large number of axons and different types of axon diameter distributions. One key insight of this study is that the heterogeneity of the axonal diameters has a dispersive effect, and that a higher level of heterogeneity requires stronger ephaptic coupling to achieve full synchronisation between spikes

    Mean-field approximations of networks of spiking neurons with short-term synaptic plasticity

    Get PDF
    Low-dimensional descriptions of neural network dynamics are an effective tool for bridging different scales of organization of brain structure and function. Recent advances in deriving mean-field descriptions for networks of coupled oscillators have sparked the development of a new generation of neural mass models. Of notable interest are mean-field descriptions of all-to-all coupled quadratic integrate-and-fire (QIF) neurons, which have already seen numerous extensions and applications. These extensions include different forms of short-term adaptation (STA) considered to play an important role in generating and sustaining dynamic regimes of interest in the brain. It is an open question, however, whether the incorporation of pre-synaptic forms of synaptic plasticity driven by single neuron activity would still permit the derivation of mean-field equations using the same method. Here, we discuss this problem using an established model of short-term synaptic plasticity at the single neuron level, for which we present two different approaches for the derivation of the mean-field equations. We compare these models with a recently proposed mean-field approximation that assumes stochastic spike timings. In general, the latter fails to accurately reproduce the macroscopic activity in networks of deterministic QIF neurons with distributed parameters. We show that the mean-field models we propose provide a more accurate description of the network dynamics, although they are mathematically more involved. Using bifurcation analysis, we find that QIF networks with pre-synaptic short-term plasticity can express regimes of periodic bursting activity as well as bi-stable regimes. Together, we provide novel insight into the macroscopic effects of short-term synaptic plasticity in spiking neural networks, as well as two different mean-field descriptions for future investigations of such networks

    The perception of musical phrase structure: A cross-cultural ERP study

    Get PDF
    Electroencephalography (EEG) was used in a cross-cultural music study investigating phrase boundary perception. Chinese and German musicians performed a cultural categorization task under Chinese and Western music listening conditions. Western music was the major subject for both groups of musicians, while Chinese music was familiar to Chinese subjects only. By manipulating the presence of pauses between two phrases in the biphrasal melodies, EEG correlates for the perception of phrase boundaries were found in both groups under both music listening conditions. Between 450 and 600 ms, the music CPS (closure positive shift), which had been found in earlier studies with a false tone detection task, was replicated for the more global categorization task and for all combinations of subject group and musical style. At short latencies (100 and 450 ms post phrase boundary offset), EEG correlates varied as a function of musical styles and subject group. Both bottom–up (style properties of the music) and top–down (acculturation of the subjects) information interacted during this early processing stage

    Beyond fractional anisotropy: Extraction of bundle-specific structural metrics from crossing fiber models

    Get PDF
    Diffusion MRI (dMRI) measurements are used for inferring the microstructural properties of white matter and to reconstruct fiber pathways. Very often voxels contain complex fiber configurations comprising multiple bundles, rendering the simple diffusion tensor model unsuitable. Multi-compartment models deliver a convenient parameterization of the underlying complex fiber architecture, but pose challenges for fitting and model selection. Spherical deconvolution, in contrast, very economically produces a fiber orientation density function (fODF) without any explicit model assumptions. Since, however, the fODF is represented by spherical harmonics, a direct interpretation of the model parameters is impossible. Based on the fact that the fODF can often be interpreted as superposition of multiple peaks, each associated to one relatively coherent fiber population (bundle), we offer a solution that seeks to combine the advantages of both approaches: first the fiber configuration is modeled as fODF represented by spherical harmonics and then each of the peaks is parameterized separately in order to characterize the underlying bundle. In this work, the fODF peaks are approximated by Bingham distributions, capturing first and second-order statistics of the fiber orientations, from which we derive metrics for the parametric quantification of fiber bundles. We propose meaningful relationships between these measures and the underlying microstructural properties. We focus on metrics derived directly from properties of the Bingham distribution, such as peak length, peak direction, peak spread, integral over the peak, as well as a metric derived from the comparison of the largest peaks, which probes the complexity of the underlying microstructure. We compare these metrics to the conventionally used fractional anisotropy (FA) and show how they may help to increase the specificity of the characterization of microstructural properties. While metric relying on the first moments of the Bingham distributions provide relatively robust results, second-order metrics representing the peak spread are only meaningful, if the SNR is very high and no fiber crossings are present in the voxel
    corecore